Web-based process discovery tool for Ethereum applications Thesis C Presentation

STUDENT: SHENGHAN GAO (Z5211215) SUPERVISORS: CHRISTOPHER KLINKMÜLLER & DILUM BANDARA ASSESSOR: HELEN PAIK

Outline

- Project Description
 - Expected Outcomes
- Results
 - Demo
- Methodology
- Conclusions & Future Work
- Reference

Project Description

- Motivation:

 - To have multiple functions within one tool.
 - To provide an intuitive visualisation of the application.

- Aim:
 - analyse smart contracts that are deployed on Ethereum.

• Use tools to understanding user behaviour and monitor the process of smart contract.

Develop a tool provides a web-based analytics dashboard for using process discovery to

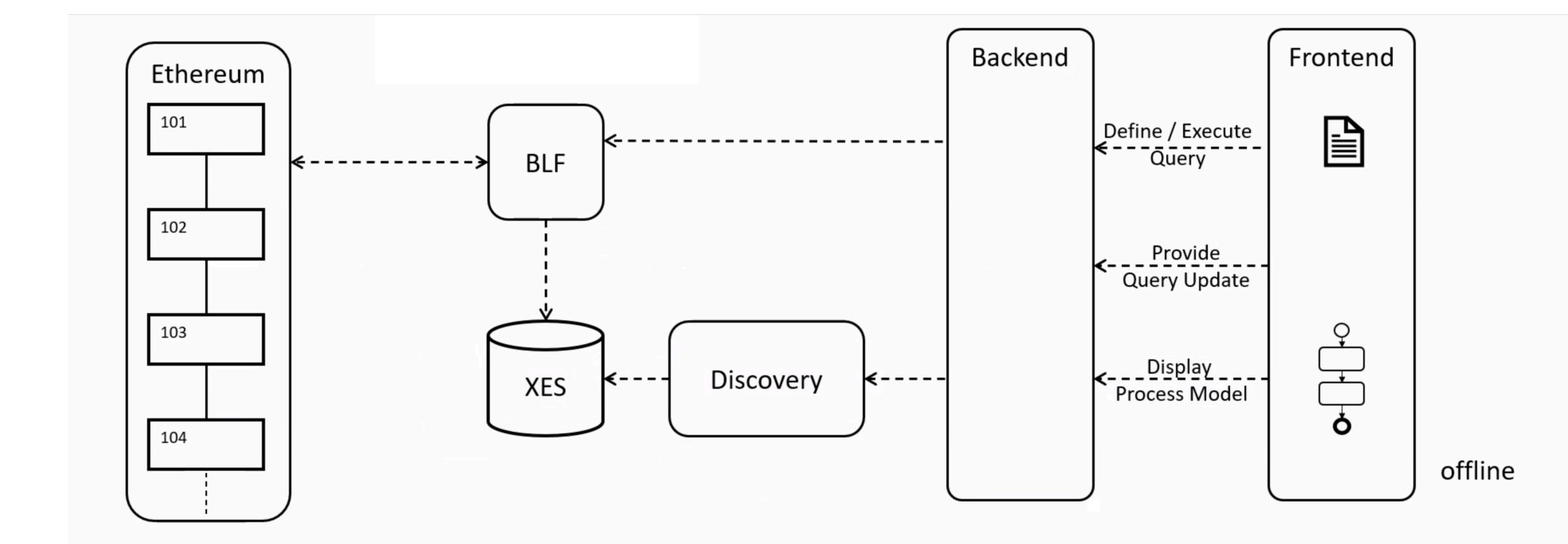
Expected/Current Outcomes

- - Users are able to compose, upload and save their own query.
 - Users are able to validate and execute the query.

- Provide process discovery analysis function.
 - Generate the Directed-Follows-Graph (DFG).

- Connecting the whole process with a single dashboard. •
 - Interactive responsive interface.

• Integrate the data extraction function implemented by Blockchain Logging Framework (BLF).


Demo

• For CryptoKitties, discover the actual process.

RESULTS

Project architecture

PROJECT DESCRIPTION

Event Log Extraction

- Functionality
 - Event log: Extract, transform, format and export (XES).
 - A query language and validate the query language.
- Technology
 - Blockchain logging framework.
 - Ethereum networks.
- Problems
 - Filters adapt with certain private networks.

METHODOLOGY

Process Discovery

- Functionality
 - Visualisation techniques.
 - Transform the data.
- Technology
 - Directly-Follows Graph (DFG)
 - Dagre
- Problems
 - Layout algorithm & time efficiency

METHODOLOGY

Integration

- Functionality
 - BLF query compose, import, validation, download and execute
 - Logs import, visualise for process discovery
 - Usability improvement
- Technology
 - ReactJS/HTML/CSS => interact with user & present
- Problems
 - Handle request & execution

Conclusion

- What does the tool bring:
 - Entire process is less fragmented.
 - Easier to perform process discovery on Blockchain data.

Planned tasks	Completeness
Integration of each part	Connecting each component
Usability improvement	Responsive interactive interfa / UI improvement
DFG algorithm	Dagre D3 package
Additional functionality	Query saving/XES uploading result downloading
Conformance checking	Out of scope for thesis c

-- COMPLETED -- NOT COMPLETED

Future Work

- Enable the user to do more analysis
 - More process discovery algorithms
 - Support more process mining techniques.

- To improve the performance
 - Speed up the entire analysis process
 - Extracting speed/mining speed

RESULTS

CONCLUSIONS & FUTURE WORK

11

Thank you

Reference

- docs/index.html> [Accessed 11 July 2021].
- Available at: https://arxiv.org/abs/2105.04380 [Accessed 24 July 2021].
- dagrejs/dagre-d3> [Accessed 11 July 2021].
- Framework> [Accessed 11 July 2021].
- 6. Klinkmüller, C., Ponomarev, A., Tran, A., Weber, I. and van der Aalst, W., 2019. Mining Blockchain Processes: Extracting Process Mining Data From Blockchain Applications.
- 7. Klinkmüller, C., Weber, I., Ponomarev, A., Tran, A. and van der Aalst, W., 2020. Efficient Logging For Blockchain Applications.
- Applied Information Technology, Sankt Augustin, Germany.
- 9. Promtools.org. 2021. start | ProM Tools. [online] Available at: http://www.promtools.org/doku.php [Accessed 11 July 2021].
- 10. Remix.ethereum.org. 2021. Remix Ethereum IDE. [online] Available at: <https://remix.ethereum.org/> [Accessed 29 April 2021].

1. Danielcaldas.github.io. 2021. react-d3-graph 2.6.0 | Documentation. [online] Available at: https://danielcaldas.github.io/react-d3-graph/

2. Kell, T., Yousaf, H., Allen, S., Meiklejohn, S. and Juels, A., 2021. Forsage: Anatomy of a Smart-Contract Pyramid Scheme. [online] arXiv.org.

3. GitHub. 2021. GitHub - dagrejs/dagre-d3: [DEPRECATED] - A D3-based renderer for Dagre. [online] Available at: https://github.com/

4. GitHub. 2021. TU-ADSP/Blockchain-Logging-Framework. [online] Available at: https://github.com/TU-ADSP/Blockchain-Logging-Framework.

5. Hobeck, R., Klinkmüller, C., Bandara, D., Weber, I. and van der Aalst, W., 2021. Process Mining on Blockchain Data: A Case Study of Augur.

8. M.P. van der Aalst, W., 2019. A practitioner's guide to process mining: Limitations of the directly-follows graph. Fraunhofer Institute for

